The Performance of a System for
Automatic Segmentation of Pro-

grams Within an ALGOL
Compiler (GIER ALGOL)

PrrEr NAUR
Regnecentralen, Copenhagen, Denmark

The GIER ALGOL compiler mcakes use of an automatic
system for handling the transfers of program segments from
the drum store to the core store at program execufion time.
The logic of this system is described. The performance of the
system is discussed, primarily on the basis of execution times
related to two specific programs. The discussion concludes
with an assessment of the potential gains of various ways of
improving the system.

Introduction

In programming for a machine with a nonhomogeneous
store, such ag a core store and a backing drum, the han-

ling of the transfers of program and data between the two
media is usually a major problem. In designing an ALcoL
compiler for such a machine this problem is added to all
the other problems of the compiler. Tt soon becomes clear
that the problems of program and data are essentially dif-
ferent, for two reasons. On the one hand, the programmer
knows far more about the most suitable allocation of data
than of program, because he knows the volume of the data,
while his knowledge of the size of the translated program
is usually very crude. On the other hand, an automatic
handling of program transfers is much simpler than the
corresponding handling of data because the program is
unaltered during execution, at least in machines having
reasonable addressing facilitics.

In planning the Arcor compiler for the GIER, a ma-
thine having 1024 words of core store and 12,800 words on
drum, it wag therefore decided to include an automatic
$egmentation of the program, while the handling of data
o0 the drum is left to the programmer. This decision was
based on pather crude estimates as to the structure of

Presented ut the International Symposium on Data Processing
Machiyes in Prague, September 1964.

Volume g / Number 11 / November, 1965

R. M. GRAHAM, Editor

actual programs, but has proved very successful in prac-
tice. In fact, the programming for the GIER machines now
running is done almost exclusively im Arcor. The time is
therefore ripe for another discussion of the problem, using
the experience of the GIER AvLcow system as the starting
point.

The present paper contains first a brief description of the
logic of the segmentation scheme. This is followed by a
report and a discussion of some experiments on the per-
formance of the scheme in a few representative programs.

The Segmentation Scheme of GIER ALGOL

The prineipal design of the GIER AvcoL compiler has
already been deseribed [1]. In particular, the program
storage allocation scheme is described in Sections 3.9 to
3.12 of [1]. The basic features of the scheme are the follow-
ng.

1. The compiler has divided the translated program into
a sequence of segments each held on one track of the drum.
A program track of 40 machine words will on the average
hold about 60 machine instructions. The division into seg-
ments is done by filling the translated program into tracks
without regard to the block, or other, structure of the
source program.

2. The compiler has prepared each segment to be exe-
cuted from any location of the core store and during execu-
tion. the segment will make no assumptions with regard to
the presence of other segments in the core store.

3. The transfer of segments from the drum to the core
store is done by a fixed administration which is kept perma-
nently in the core store at run time. This administration
will keep a list of the track numbers of the segments cur-
rently present in the core store. Whenever the control is
transferred from one segment to another the administra-
tive routine will examine this list, thus avoiding unneces-
sary transfers of program segments from the drum.

4. The amount of core storage available for program
segments is that which is left over when the locations
necessary for the currently declared variables have been
reserved. Consequently, the number of segments held in
the core store will generally change during the execution
of the program.

5. When the transfer of control to a new segment forces
a segment in the core store to be cancelled, the segment is
chosen for cancellation which has been left unused for the
longest time.

The administration of this logic is shown in the ArLcoL
procedure given in Appendix 1.

Communications of the ACM 671

To illustrate the logie Figure 1 shows the use of the core
store at two stages during the exeeution ol arepresentative
stove wee dentified by thew
- from O 1o 1023,
segment place needs 4 \\‘mwi.«, one of which is used to held
the PRIORITY of the taek while the rest hold the in-

The fir=t few locations of the store are reserved

program. The words of the

absolute addresses, running A program

tructions.

Locations Nituntion | Sitiation 2

ok Track

-4 28w 288
47-NT AR 304
SR-12N A0
1249160 305
170~ ’l(200
REN
304

257

3 Program

. Segments
N Program g A

Segments 257

Variables of the

o . Program

Varigbles of the b
Program

SaG- 1023 Fixed Administration Fixed Administration !

Fro. 1. Allneation of core storage

for internal purposes, so the first segment place uses the
jocations B 1o 46, the scrond the locations from 47 to 87,
ete. The svstem will never work with less than two seg-
ment places, and the maximum capacity is 20 places. The
fixed administration, including the table of the track
nunibers of the available program segments (SEGMENT
TRACK) and several other routines which will not be
described here, uses the locations from 836 to 1023, The
stack of variables of the program starts at location 835
and will at anv time reserve as many locations as are
needed according to the declarations of the program. The
largest number of variables which can be accomodated is
therefore 746. As shown in detail below it 13, however,
unwise to go that far, for reasons of the execution time.
The twe illustrations of the use of the storage should serve
to impress on the reader the fact that the system at all
thnes tries to make the best possible use of the available

core store.

As g basis for the further
figures on the execution times of some of the basic tasks
Table 1, extracted from

dizcussion of the scheme some

are necessary, These are given In

2, App. 3L
The range of thmes given for

the transfer of control

to a track already in the core store reflectis the time of

search through the SEGMENT TRACK table. Clearly
the time depends on how soon the track s found. Details
of this in specific cases are given below.

The Performance of the System
performance s concerned

The present study of the
the various admin-

with the time spent on performing
istrative tasks involved. The most important of these are
the time used for transferring drum tracks and the time

used for handling the transfer of control among such

672 Communications of the ACM

tracks which are already present in the core store, The

purpose of the study s to determine the relative e
e cases, with a view
(he sysic The improve-
ments considered wre those which \wuld (‘11,‘1111 only relg-
tively the machine,
Changes which involve the wdoption of a basically differ
ent approach, such as o velnee of information supplied

portianee of the varions tasks i realis

to possible mprovements of

minor changes ol the algorithms or

by the programmer, are not considered here,

As the fiest problem, let us try {o get an idea of the
stgnificance of the drum transfers for the overall execution
tine, Fhis witl be important i delining the eiveuwnstances
under whicl other factors will have o be studied. Clearly
the tmportanee of drum transfers will depend on the
number of segnent places available in the core store. It is
therefore natural to study the execution time of a given
program as a function of the available wumber of drum
tracks. A realistic wav of determining this funetion is to
perform timing esperiments on the machine. A fairly
simple way of doing thiz is the following. We embed the
given program in two blocks of the form:
hegin integer p;
input (p);

begin array A{1: pl;

. Here we write the given program

end;
end;
TABLE 1. Execurion Tives

Milliseconds
Transfer of track from drum 21
Transfer of control to track already in core store 0.7 1.6
Reference to subscripted variable, 1 subseript 0.9
Reference to subseripted variable, 2 subseript [.2
Floating point addition 0.12
Floating point multiplication 0.18
Address coincidence test (search comparison) 0.044

TABLE 2

INTEGRATION

. Tnversion
%%Wwwwmﬁw
oW &) 4 [E) I 3) (4
9 96 645 971 9.2 1 822 477 s02 211
30066 675 1305 8.4 700 588 1256 186
4067 67A 1542 8.4 534 755 1979 152
5 065 676 2230 8.4 249 1041 3335 0.1
6 11 731 2549 7.3 139 1148 4607 6.9
7 X 16 731 2055 7.5 120 1159 5060 6.
8 2 731 3056 7.4 99 1189 10 6.0
i 0 73 B 7.5 G4 1228 5081 B3
10 9 THY 76 7.4 o 1277 sy 40
118 T3 251y 7.5 9 s aTor 4
12 7 T 43 7.5 71280 73100 40
[E I I S £ X S 7 ¥ SR A 4 28t soTr L
T R+ DA T S o aess o aere 4D
15 6 1281 K061 [
16 oo 12T sl 42

Volume § / Number 11 / November, 1465

By yarying p we can at will reserve any desired fraction

of the core store.
fest Programs and Results

Eperiments along these lines have been made for two
programs, chosen 1o represent two opposite extremes with
respect 10 loop structure, as follows:

Tnpersion Program —the inversion of a matrix of order

Time in seconds

9 _\\\\ Inversion progran
& 7 Track
transfer
T
Segment traneition
6 -
5 -
4 4
- Program execution
2 -4
1 4
0 T T T T T T T T T T T
2 3 4 5 6 T 8 9 10 11 12 13 14
Segment places
Fra. 2
20 A Time in
seconds
Integration program
15
10 4
Segment places
5 - Track transfer ———
Program execution
o
[T | T T T T

1 T T 7
2 03 4 5 6 7 8 9 10 11 12 13 14 15 16

Fra. 3

Volume g / Number 11 / November, 1963

10, using a slightly modified version of the gjr procedure
of Rutishauser [3].

Integration Program—the evaluation of a double
integral by means of a Romberg procedure used recursively
[4].

More details of the programs are given in Appendix 2.

In each case the value of p was varied in steps of 41,
corresponding to the amount of store required by one
segment, until the capacity of the core store was exceeded.
The last successful run then corresponds to 2 segment
places. The run times were obtained by the use of a stop-
walch and so are only accurate within a fow tenths of a
second.

In order to facilitate the interpretation of the run-
times obtained in this way, runs of the same programs
were performed in which the fixed administration was
modified slightly in such a manner that counts of the
following three actions were obtained: (1) drum transfers,
(2) transfers of control to segment already in core, and
(3) tests for coincidence of a searched track number and
items in the SEGMENT TRACK table. Counts (2) and
(3) together allow a calculation of the exact time used for
transfers of control to segments in the core store.

The results of the experiments are given in Table 2 and
are represented in Figures 2 and 3. They are discussed in
the following sections.

- Drum Transfer Times

The differences in the essential features of Iigures 2
and 3 can be readily explained in terms of the structure
of the two programs as follows. The innermost loop of
the inversion program is the statement:

for j := 1 step 1 until n do aft, j] := ali, j] + 2 X blj]

With 7 = 10 this loop is executed 1000 times. This loop
is so short that it will be held in one or at most two seg-
ments. Consequently, even when there are only two seg-
ment places available in the core store this loop can be
accomodated. In the particular experiment it is apparent
that the loop has been placed on only one track by the
translator, since otherwise the number of transfers of
control across segments would be greater than 2000.
This explains that the program will run with no substantial
increase of run time due to drum transfers, even when
there are only two segment places available. By contrast,
the innermost loop of the integration program is composed
of the following program pieces: from procedure Romberg:

for k := 1 step 1 until maz ord do
begin
wi=4/p; xi=zXa+ 1-2) X 10 :=f;
12 := sum + f0;
error 1= error - (if abs (f0) > abs (sum)
then sum — (I2—f0) else fO - (I2—sum));
sum = I2
end summation of function values and errors;

and actual parameter corresponding to I
ifw = 0 then 0 else (—nw)](—n)

Communications of the ACM 673

different parts: the Romberg
the /n code and the

This loop vomprises four
procedure, the actual parameter,
power code. These are all stored)

drumt and depending on the segmentation done by the
translator will use from fonr to siv different tracks. This
drastic rize of drum transfor time for less

n diffevent places on the

wpluins the
than six available segment places,

1t should be realized that the drum transfer fimes just
diseussed in no way ean be used as an argument against
the automatic segment administration scheme. They are
entirely o funetion of the limited size of the machine and
would arise when the core store is filled almost to the
brim with variables no matter which administration
scheme were used. The way to avoid them 1 to organize
the program =0 as to keep the number of varables in the
core store below a certain limit.

The important result of the present section s that the
drum transfer times are important only when the program
rather tightly by variables, while there s u
wide range of normal situations in which these times are
It therefore makes sense to continue the
digscussion of these normal situations.

1= squeezed

insignificant,

Segment Transition Times

We now discuss the normal situations, as represented
by the inversion program running with six segment P Maces
or more, and by the integration program running with 10
segment places or more. In these situations we find that
the segment transgition times amount to 11 percent and
32 percent of the total execution time in the two programs.
However, these times are quite sensitive to otherwise
ingignificant changes of the programs, which may move
a gegment transition in or out of the innermost loop of the
program. As an example, suppose that a segment transi-
tion had been placed right in the innermost loop of the
inversion program. Thiz would cause an extra 2000 seg-
ment transitions, using about 2.2 seconds. The execution
time would be 9.6 seconds and the segment transition
time would be 31 percent of this.

More generally, the shorter the innermost loop con-
tributing to the bulk of the execution time, the more
sensitive will the program be to differences of segmenta-
tion and the more significant may the transition time
become. The extreme case which i still of practical interest
i probably something like the following:

.

for i 1= j while A{{] = y do j = j+1;

The loop time of this is sbout 1.6ms. A segment transition
placed in this might in the extreme case contribute an
extra 3.2ms, thus slowing the execution down by o factor
of 3. The other extreme is the case of
extensive caleulations, without calls of procedures or
formal nares, In this case there will be up to 80 floating
operations between each segment transition. This will
give o constant contribution of transition times of about
10 percent, independent of the segmentation.

Although not alarming, these figures invite o eonsitdern .

a long loop including

674 Communications of the ACM

tion of possible wavs to veduce them, Three sueh DOSS-

)
bilities are described heres The fiest possibility s g add

suttable fogie 1o the transhtor Tor deterting o suitably
chosen: elass of short mnermost foops and making yure
that no =ueh doop is plaved across o =egend fransition,
i onecessary by wasting space on g denny traek, Thig ap-
pronch would be I’“:mi}; stnple to maplement, in particular
slator Hike GTER Avcor. However, i is

of rather hnmmi \‘:x,hu*, sinee 1t would only help (o avoid

incomultipass (e

the outstandigly bad

cases while wasting spuce on deum

tracks o many unimportant cases; not every short inner-

most loop = a sienificant contributor to the execution
time,

melude
analysis of

A second possibibity would be to
time administration o periodie

in the run-
the program
of replacing
Loavadlable segments by direet

segment configuration with o possibility
segment transitions withu
This might turn out Lo be a simpler matter than
might perhaps appear ab firs :\'i}zm However, again the
adlvantages are doubtiul, sinee the detection of o candidate
<'(m[igm”uim for jumup replacement will depend on this
conliguration having :111'0:1(!}' run for n
may well be too late.

A third possibility
te the havdware logic of
segment transition
be speeded up by a factor of
the problem would be solved.

}H .

wany eveles, which

instruction
the machine to take eare of the
I thix were done the transition might
about 6, which meany that

Within GIER Avcon the
cost of thiz sohution would be high, since both hardware
and software would have to be changed. However, in a
new machine this would be the obvious solution.

would be to add o new

Effect of the Program Storage Cleanup

The figures of Table 2 allow an estimate of the effect
of the storage cleanup performed at every 510
segment transitions. The cleanup cancels the segments
stored closest to the stack as long ns they have not been
used during the last 256 segment transitions. This short-
ening of the segment table will make itself felt during the
execution of loops which can casily be held in the avail:
re (im'm;{; the size of the

y be seurched al every seg-
a direet expression of this

program

able segment places, l;
SEGHENT TRACK table
ment transition. To obtai

effect we may compare the average number of the actually
performed scarch {ransition
with the number to be experted if o places
were used, (p+1)/2, where p is the number of places.
nuabers is shown i
when there ate
places

comparisons per segment

 free segment

The relation between these two
Pigure 4. This ligure shows elearly that
more than o certam number of available segment
the number of search comparisons is usually well b()l)\\
the expeeted n

To obtain the effect on the
may note that the saving realized by the cle anup fech-
nique amounts to roughly o third 1o o half of the t otal
tiroe used for the search comparisons. On o the b NS of
Tables T oand f the

mmber.
total exeention time We

2 this ds found to be oo few pereent

Volume 8 / Number [1 / November, 1965

total exeeution thne. The saving must be weighed against
the costs of the featwre. These arise partly from the
periodic cloanup process itself, partly from the drum trans-
fers which would have been avoided if the segments had
not been cancelled. The first of these amounts to less
than 2 milliscconds every 510 segment transitions and
s0 is negligible. The sceond is highly dependent on the
program and iay range from nofhing to an amount
which will sivamyp the complete saving,

[t must therefore be concluded that the program storage
cleanup feature is a doubtful advantage which probably
might as well be omitted.

Jarying the Segment Size

All the experiments reported above refer to the same
segment size, 40 words. In general the segment size should
be considered to be a parameter chosen in some optimum
nmanner. We have no experimental results bearing cli-
rectly on this matter, but must confine ourselves to the
following discussion.

An upper limit to the segment size is imposed by the
necessity of being able to accommodate innermost loops
comprising several segments completely in the core store,
A significant result related to this is the number of seg-
ment places needed to reduce the drum transfer time to a
negligible size. This is shown by Figure 2 to be 6 and by
Figure 3 to be 10. Allowing for variables in the core store
it would seem from this that the segments should be
kept so short that at least 20 can be held in the core store.

A lower limit to the segment size imposes itself by the
necessity of supplying a code indicating the segment
termination at the end of each segment. The fraction of
the storage capacity used for this purpose will increase
as the segment size 1s reduced and will eventually drown
out. all the useful information. This capacity effect is
added to the increase of the segment transition time,
whose importance depends greatly on the hardware
facilities, however.,

Although this discussion is inconclusive there is nothing
to indicate that a segment size in GIER Ancor of, say,

9y
Search comparisons
8 « per segment transi- .
tion
1
>
°
6
5
4
3
2
Inversions ®
1 4 Integration: o
Segument places
O AT T T T T T T T T T
2 3 4 5 6 7 8 10 11 12 1% 1 15 16
Fra. 4

Volume § / Number 11/ November, 1965

2 drum tracks, would offer any advantages over the simple
choice actually adopted.

Conclusions

In view of the fact that the segment administration
described above was realized entirely through machine
facilities which in no way had been designed with this
problem in mind, the performance achieved scems very
satisfactory. The approach can therefore be recommended
for use in machines of a similar structure. Even better
performance may be achieved if one rather special ma-
chine instruction is available. This would therefore be an
important feature to include in new machines.

The importance of the characteristics of Avgor 60 for
the success of the system may also be noticed. Indeed, the
approach depends directly on the block structure of the
language and the attendant possibility of using a stack
for the variables of the program.

Acknowledgements. The ideas described in the present
paper are the outcome of the continued collaboration of
Jgm Jensen and the present writer. The remarkably
concise and effective machine coding of the fixed ad-
ministration was done by Jern Jensen. In discussing the
possibility of a special machine instruction for performing
the segment transition we have been assisted by Per
Mondrup, who did the nceessary microprogramming.

APPENDIX 1

Program Storage Administration

The following Avcorn program gives the essentials of
the program storage administration held permanently
in the core store at run time. It is hoped that the choice
of identifiers and the comments given will make further
explanations unnecessary.

integer MAX SEGMENT, CURRENT PLACE, LAST USED,
CURRENT PRIORITY ;

integer array SEGMENT TRACK, PRIORITY{1: 20];

comment These variables define the state of the system. MAX
SEGMENT gives the number of segments held in the core store.
Depending on the number of locations reserved for variables
this will be an integer between 2 and 20. CURRENT PLACE
gives the number of the segment place holding the program
being executed. For simplicity the program assumes that the
segments are stored consecutively from address 0. LAST USED
is the smallest address pointing to locations used for variables.
CURRENT PRIORITY is the priority of the segment being
executed. SEGMENT TRACK and PRIORITY list the track
namber and associated priorities of the segments presently
held in the core store. Only the first elements, up to index =
MAX SEGMENT, are meaningful;

procedure TRANSFER CONTROL(TRACK, RELATIVE AD-
DRESS);

integer TRACK, RELATIVE ADDRESS;

comment This procedurc must be called from the translated
program every time the eontrol should be transferred to an-
other segment;

begin integer {, min priority; o

for CURRENT PLACE = 1 step L until MAX SEGMENT do

675

Communications of the ACM

i TRACK = SEGHENT TRACKICURRENT PLACT
o to NET PRIORITY .
comment Urack i oot in core store;
wiine priovidy e CURRENT PRIORITY
until AN SEGCUENT do
< min priority then

c= PRIORIT Y

“then

for t= 1 step
WOPRIORITY
begin min priocity CURRENT PLACE =
s end;
transfer from drami TR ACK Y to address: (070
105
SEGMENT TRACKICURRENT PLACE] »= TRACK:
WAV AN SEGUENT + 1 X 4 < LAST USED then
begin comment Release of o segment
MNAN SEGUENT AN SEGUENT + 1
SEGUENT TRAC [\ HAN SEGMENT) = 0:

comvnent

REENT PLACE X

The mmi; released segment is not used at onee, i
order to counteract the 1l effects of o rapidly fluctuating stack
of variables in the core store:

PRIORITYIMAN SEGMENT] i= CURRENT PRIORIT Y,
end;

SET PRIORITY

PRIORITYCURRENT SEGMENTY 1= CURRENT PRIORITY

v= CURRENT PRIORITY <+ 1;
iECURRENT PRIORITY > 511 then
begin comment
ments at high segment numbers are cancelled;
Boolean cincel;

Program storage cleanup: rvarely used seg-

integer p;
cancel 1= true;
r= WAN SEGMENT step —1 until 1 do
hegin p 1= PRIORIT Y[z] + 256,
if cancel thcn cancel 1= p =0 A\ 1 > 2;
if caneel then MAX SEGUENT = AN SEGUENT — 1
else PRIORITY] = p;
end;
CURRENT PRIORITY =2
end clean up;
ao to instructionidl X CURRENT PLACE = RELATIVE AD
])Fl xsbj,
end TRANSFER CONTROL,

for 1

APPENDIX 2

Test Programs

The full texts of the test programs given below inelude
several calls of standard procedures of the GIER Awvncor
LI svstem. The effects of these are given briefly as follows:

drum pluce. An ipternal variable whose value controls the part
of the drum invelved in calls of from drum and gierdrum,

From drum. Transfers values from the drum into an array given
ad pararmetor,

gierdrum. Beads binary code from the input tape 1o the drum.

gierpree. Jumps to the machine code given as parameter.

Fhon. A Boolean procedure giving the state of a manual switceh,

Punches the arithmetic value of the sceond parameter,
Waits for input of a character from the typewriter.

Waits for juput of a number from the typewriter,

oulpul,
typechar.
typein.

write. Types the arithmetic value of the sccond parameter,
wralecr. Types one carriage return character.

wriletent. Tyvpes o text.

The Matrix Inversion Program

begin

procedure gir (o, n, eps, singular);

value n, eps, integer n; Label singular
Tuversion of matrices by the method of Gauss-Jordan
ACM 5

array real eps;
comment

[Reswarz, Ho 1L An introduction to ALGOL. Comm,

676 Communications of the ACM

leb, 1062y, 52 03]
in\'m‘ ed,

nois the ovder of the matrix afi,
cps s o toleranee for

K} to be

neceptance of the singuladity
of the given mateix and singular s the emergeney exit in ease
of wsingulae mateiv;

begin integer /J by veulpivol 2 areav b, el al;
integer arvay p, g/l ul;

for &
begin comment:
pleol =)

= Lstep b until oo do
deternination of the pivot element

ford i= Lstep Lantiln do forj = L step Luntila do
it abs (alr, J1 > abs (pired) then
begin pirol = ali, JI; plkl = 0, gqlk] = j end;

i abs{pirot) < cps then go to singular;

comment: oxchange of the pivotal row with the kth row:

¢ o= plhl;

if 7 = kthen for j i= 1 step | until n do

c=oalio gl el gl = alk, gl alk, 31 = zend §;
exchange of the pivetal columun with the htt

begin ¢
convment:
columu;
J = qkl;
if 7 ¥ b then fore /
begin ¢ = o/, jl; ali, 71 = ali, k];
Jordan step;
t= | step 1 until 7 do

R »‘icp L unlil n do
alt, k] 1= 7z end 1
comment :
for
begin
iy =k then

begin b{j] = 1/pivot; ¢[jl := 1 end
: J

else begin blj] = —alk, jl/pivet; clj] = alj, k] end;
alk, 7] := «alj, k1 = 0
end j;
for ¢ := 1 step | until 2 do
begin z .= ¢li];
for) ;= 1 step Luntiltndoali, j| = ali, 7] -+ 2 X b[7}

end for ¢
end k;
comment: rcordering of the matrix;
for k ;= n step —1 until 1 do
begin
7= plkl;
if j # k then for 7 = | step | until 2 do

begin z = a7, j1; ali, j] = ali, k]; ali, k] = z end {;
i = lil;
if ¢ # & then for j ;= 1 step | until n do

begin z = «fi, 7], «li, 7} = alk, j}; alk, j] = zend j

end &
end gjr;

integer o, w;

d o= drum place; gier dram (33, w);

Input of machine code to drumn;
begin boolean array 7'{1: wl;
writetexl ((<C

Swt KBY); lypechar,

comment Machine code {0 77

0 step 1 until 25 do

41 pl, all: 10, 1: 10};

if kbon then gicrproc{T3]) else (1//)(4/1(1/';

for 7 := 1 step | until 10 do

comment
integer p;
dr 1/1171)[(1('(' c= s from drum (T
for p =

begin array A1{0: integer 1, 7;

for j 1= 1 step I until 10 do «li, j| 1= alj, 1] 1= 11 — 7;
gir(a, 10, 10-8, wdy;
e
if kbon then begin gicrproc(1T12)); output (nddy, p) ennd
clse begin wrileer; write ((nddy, p); 1 = lypein end;
end
end
end;

(Continued on page 68

Volume 8§ / .\’umlwy/ll / Novermnber, 19
J

