
Tire above definilions are illustrated in the following 
e x a m p l e .  

COLUMN-COUNT = 2 2 2 1 
f = 50 30 15 5 

-- ml ..... R2 m a R4 ~C DELTA OASH-COUNT 

C 1 - Y - N 130' 1 4- 

C 2 Y N Y N 0 1 0 

C 3 N Y Y 60 1 2 

STEPS IN THE ALGORITi-i~f 

Step 1. Same as for Algorithm 1. 
Step 2. Determine those rows that  have a minimum 

weighted dash-count. 
Step 3. If two or more rows have a minimum WDC, 

select fi'om among them the row that  has the minimum 
delta. If among these there still exists t.wo or more rows, 
select the row with the minimum dash-count. If there are 
more than two such rows, select any one of them. The test 
on dash-count does not affect computer running time, but  
can save memory space without adding to computer 
tutoring time. 

Since all rows in the example have the minimum 
weighted dash-count, test their deltas. Since C2, Ca and 

C4 tt~:we the minimum delta, test {heir (l ~sl> :~(m ~is. Since 
all t h r e e  eligib]e rows (2, 3 and 4) have {he minimum dash- 
count., selee, t any one of (}tem as (]k. 

COLUMN-COUNT = 4 4 4- 4 
f = 40 20 20 20 

DASH-COUNT~ 

C 1 - Y N Y 160 ¢ 

lC2] Y - N - 160 0 8 

C 3 Y N - 160 0 8 

C 4 Y - N 160 0 8 

C 5 - Y Y N " 160 4- 

Steps 4, 5 and 6. These steps are the same its for' Algo- 
r i thm 1. 

The procedure for Algorithm 2 is illust.rated in 1/igure 2. 
Note: For tlhe transformalion shown in Figure 1, ~ 

batch of 100 transactions that satisfy rules 1-4 in the pro- 
portion 50, 25, 10, 10, respectively (and 5 for IgJ£E) will 
require a minimum 318 comparison executions; for the 
transformation shown in Figure 2, the trai~sactions will 
require a mitfimum 288 comparison executions (see 
Table 1). 
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A Comparison of the Primal- 
Simplex and Primal-Dual 
Algorithms for Linear 
Programming 

R. K.  ~ U E L L E R  AND L. COOPEI{ 
Washington University,* St. Louis, Missouri 

A statistical comparison of  the primal-dual and the more 
commonly used primal-simplex algorithm for solving linear 

programming problems has been made under the assumption 

of starting with a full artificial basis. Under these conditions 
the primal-dual method shows a statistically significant superi- 

ority on randomly generated problems. It has also been 
found, wa  a regression analysis, that the relevant parameters 

in determining the difference in the number of iterations be-  

tween the algorithms is not only the number of constraints and 
the number of variables but also the ratio of  the latter to the 
former. 

1. I n t r o d u c t i o n  

The simplex method for linear programming refers to 
an Mgorithm, developed in 1947 by  George Dantzig, which 
is now widely used to solve linear programming problems. 
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A possible inefficiency in the simplex method occurs if a 
large number of artificial vectors must first be added to 
the problem in order to obtain an initial basic feasible 
solution, that is, one which has non-negative componenls. 
To obtain an initial basic feasible solution to the original 
problem, that  is, the problem without artificial vectors, a 
special procedure is followed. This procedure, called phase 
I, proceeds toward a basic feasible solution to the original 
problem without at tempting to optimize the objective 
function. Thus phase I could end with the solution being 
far from optimal [1]. 

Another  method, proposed jointly by Dantzig, Ford 
and Fulkerson, but, which has not been extensively ex- 
plored or applied, uses duality theory to proceed loward 
optimali ty as well as feasibility in phase I. Using this 
algorithm, more restrictions are placed on vee(ors allowed 
to enter the basis, while still using the basic simplex method 
of iteration. The restrictions are chosen, in such a way 
that  when phase I is ended, the solution is optimal. This 
eliminates the need for phase II  calculations. 

One would naturally wish to know whether the primal- 
dual naethod is indeed superior to the primal-simplex 
method. Also one might wish to know how to go about 

The computer time on the IBM 7072 at the Washit~gt, on Univer- 
sity Computer Center was made ~vailable under NSF Grant. 
G-22296. 

* School of Engineering and Applied Set(race. 
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exhibffing the trud~ or falsity of this eonjeetul'e. First it 
is necessary to de[iue more precisely what is meant by 
superior. In this eo~t ext superior probably means "faster;"  
~}mt is, primal-dual would be judged superior to primal- 
simt>lex if it would solve compa~'able problems in less time 
on a high speed computer. "Comparable" in the context 
oi this paper, since it is the only case that has been in- 
vestigmed, is a problem in which one acids a full set of 
ardticial vectors in order to employ an identity matrix as 
*lie basis for the expression of lhe initial basic ~easible 
s01mion. 

[t was observed previously that the primM-dual and 
primal-simplex algorithms both use the simplex method 
re iterate. The primal-dual however requires art additional 
sel of calculations per iteralion. If the times per iteration 
eoukl in some way be shown to be about the same for' 
bodl methods, the problem is then reduced to one of com- 
paring the iteration counts of comparable problems. 

Richard Mills [2] has shown that the iteration time for 
the prhnal-duM algorithm is no more than five percent 
longer than the time for' the simplex method. With this 
itfformation all that is necessary to judge the superior 
method is to eompare iteration counts of the two methods 
fbra  represen{aiive sample of problelns. 

The problem of finding a large number of problems to 
use for comparison purposes was solved by generating the 
required arrays randomly. 

2. Theore t lea l  B a e k g r o u n d  

The general linear programming problem may be stated: 
Max z = ca:, where c is a n-component row, cost vector 
.trod :r is :~ 'r~-eonq)onent column, solution vector. The 
solution vector is also subject to the constraints: A z  = b, 
(:r > 0) where A is an m X n  eoeffk.ient matrix and b is 
thee m-component requirements, column vector'. For a 
detailed discussion of primal-simplex algorithm theory 
.:t~d prhnal-dtml algorilhm theory, the reader is referred 
~:o [1], 

For the purposes of this paper, it is necessary to ehar- 
,:~e~erize certain aspeets of tbe assumptions and variations 
of d~c algorithms used, since the terms "primal-simplex" 
.~md "primal-dual" are not unambiguous descriptions of a 
unique sequence of eornput~ttional steps. 

The primal-shnplex algorithm described here is a two- 
phase revised simplex method which utilizes the product 
f0:rm of the inverse in transformation of the basis. The 
it~idal basis is a full mXm. artificial basis with which phase 
I is begun. 

Earlier work [4] tends to indicate that the use of other 
procedures using some legitimate vectors and some arti- 
tidal vectors might reduce the number of iterations in 
phase I. No comparisons of these procedures with the 
primal-dual algorithm have yet  been made, Mthough it 
seems unlikely that the primal-dual algorithm as originally 
deseribed will be superior to these procedures. I t  is pos- 
sibly true, however, that  modifications of primal-duM 
proeedures could be found to reduce the ~mmber of itera- 
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tions, if attention were given to this ln'oblem. Since two- 
phase primal simplex differs from the primal-dual al- 
gorithm in that the primal-dual method consists of onlY~ a 
phase I in which the full arlificial basis is used, it was 
decided to compare this procedure against the correspond- 
ing primal-sintplex procedure. To date, only tile paper' by 
Wolfe and Cutler [3], which gives results of comparisons 
of methods to reduce the number of iterations in phase I 
of primal simplex, is available. No similar attempts have 
been made to modify in any way the primal-dual al- 
gorithm. Hence, it; was decided to compare the two al- 
gorithms as indicated. 

Tire primal-dual Mgorithm that was employed is, as 
described in [1], a method for transforming the basis which 
is essentially the product form of the inverse teehni(Ne. 
Because of this, the computation time per ileration was 
very (.lose for both primal-simplex and primal-dual 
methods. This is discussed in more detail in Section 4. 

I t  is recalled thai, the primal-dual algorithm is a phase 
I calculation which is carried out, in such a way, namely, 
by satisfying the prineiple of complementary slackness 
at each iteration, that when a first feasible solution is 
obtained at the conclusion of phase I, the solution is also 
optimal. Hence, there is no phase II in the primal-dual 
algorithm. It is possible that variations in the starting 
basis for the primal-dual algorithm can be found similar 
to the preliminary experiments reported in [4]; this is 
presently under consideration. However, in this paper we 
have compared the initiM basis for both algorithms as a 
full artificial basis. 

The only earlier' comparison of the two algorithms [2] 
was inconclusive because (1) the author failed to derive 
certain conclusions from his timing comparisons, arrd (2) 
he did not at tempt to study a significant number of prob- 
lems. 

A fm'ther point concerning this study is the choice of 
rule for determining the vector to enter the basis. Several 
studies of this problem [4, 5] have been made for' the 
primal-simplex methods. We have employed the most 
commonly used rule (the most negative z; - cj in a maxi- 
mization problem). Other rules would possibly decrease 
the number of iterations. However, variations of these 
rules or the rules themselves eould also possibly be used 
to decrease the number of iterations in the primal-dual 
algorithm. No studies of this have been reported; this is 
certainly a matter that could and should be investigated. 

3. R a n d o m  G e n e r a t i o n  o f  D a t a  

To compare the two Mgorithms it is necessary to com- 
pare them on some "representative" problems. The sim- 
plest procedure that  could be followed, it was decided, 
was to generate the coefficients of A,  b, c randomly for a 
set of problems of varying size (rows and columns) and 
analyze the results using standard statistical tests of 
significance. A computer code was written to do this. 

The number of constraints, the rmmber of variables, 
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a i d  i;he i i i t i i iber of iiOiizero elelnents in the  eoef[icienL 
I~i l t t l r ]x t t t 'o i np t l L  [hq3'~tiiietc.Fs i l l  the computer code. L-shag 
tl'ii~ in format ion lhe co<;fl+i(:ient; m a t r i x  Js ca]cu]a ied  by  
assigning a i+~[l(|Olll flIIIN[)OF b,(~tw,oel+l zero arm one to Cel'- 
l;ain posil, ioris in t{ie array. The remaining positions in tlle 
a[' l ' { ty ttre ZeFO. The i)airs <if indices for  the IIOiiZ(;i'() e, le- 
i l ieHls t t r e  ehose, ii by  assigt , ing io each row index,  s t a r t i u ~  + 
w i t h  row one and  co i l t i lming  l:ht 'ough row m in cyclic 
faslliori, a colunin index, whi<:ll is chosen at, r'i, ndoni from 
Lhe /'9,tige> OliO to 'ft. 

Ti le cost coeflieionls are i ' a i i do i / i  l i t lnqbel '8 in the i'aii~o, 
zero to one. "['o prevenl  unbou[ ided so]ut,ions f l 'Oli l  oc- 
(;urring, lhe sum o[' ihe wu' iab les  are conslA'ailied to t)e, 
less than or e(lual i~o 10 r'. 

To insure lli '~t a feasit)le sohl l ion Lo the gener~iAed [)rob- 
tern exisis ,  lt ,e r o q u i r e m e n i s  w~cior is ¢:deul:0.ed as fol lows:  
A so{ut.ion vec to r  is g e n e r a t e d  r a i M o l n l y  wi th  c o m p o n e n t s  
r m i g ing  f rom one io fifty. A m a t r i x  mtllt}l~licalion , Ax  
= b, is perfornied 1o cah:ulatc b. 

This nielhod of general, loll instli'es tJiat a fe'~sible solu- 
t ioi l  Io i,he prot)lem exists, sinco c.iie feasible so[ution is 
tho ono gener~iA.ed r~i3idoinly. 

~. lle, s u h s  

Thh ' ly -one rti, i idoni ly  generaied linear I)rogranini i t ig 
t)rob]el~is were l ' l l l /  t;o (.Olli l) Itre it ,eratJoti  (',Otltlls of  t ) l ' i lnal -  

"I 'AI/I , I ' i  t. q'AmJ~: <,tl,' I{ESUi/rs 

Pcrccn! Ylonber o J ,\'to~tber o/  lteralio*t Counls IVci,q/eh:d 
D~:~t.sigv (,'Ollsl'rltitlls I"ariablcs Pr imal .  Si nplc.~: D tfcrct :cs Rank 

• Dual +< 
10, 10, ;15, t0. I I. 0 .5  3 
20. 10. 15. 12. I (i. 3 .4  1 I 

5, 14, 20. .l 1. 12. 0.45  2 
12. 15. 20. 17. 20. 2.15 8 

5. 15, 40, 16. 25. 8 ,2  22 
5. 15. 50, 17, 2:}. 5 .15 IS 
5. 15. 60. IS. 24. 5, 1 [6 .5  
5. 15, 8(1. I(;r 2 8 .  I 1 , 2 2 8  

5. 15, 100. IS. 2,1. 5. I 16.5 
5. 20. ,I0. 2 l .  27. 4.95 15 
5, 20, 50, 22. 31, 7 r {t 21 
5. 20, 60. 21, 28. 5,95 19 
5. 20. 70, 22, 3t,  10.9 27 
5. 20. 100+ 24. 41, 15.8 30 
4 .5  21. 22+ 16+ i l l  - - 0 . 8  5 
5. 25. 40. 26. 31. 3 .7  12 
5. 25. 45. 27. ;{7. 8.65 23,5 
5. 25. 50. 28. 42, 12.0 29 
5. 25. 55. 27, 37. 8. (;5 2;I. 5 
5, 25, 60. 2S+ ;{9, 9 .6  26 
4 .5  29, 35, 27. 27, -- l .  ;{5 7 
7 ,6  30. ;{5, 33, 32, - 2, (;5 10 
5. ;30. 40. 31. ;12. +- 0 .55 4 
5. 30. 50. ;18. 39. - 0 .9 6 
5, 30. 60. 3;{. 44, 9.35 25 
5. 35. 40. ;{5. 37. O. 25 1 
6 ,4  35. -10, 42+ 40. -- 4.1 14 
5. 35. 50, ;{9. 45+ ,[.05 13 
5. 35. 60+ 39. 57. 16.05 31 
5. 40. 50. 45. 45. - 2+ 25 9 
5+ 40. 60. 52. 61. 6.4 20 

6 8 4  C o n i l n t l n i c a l ; i o n s  (If t h e  A C M  

siml>lex ~nd t>rimal duuI. l']a(+h t>lo}~l<.lu wits ruii wql], i}. 
S~[lfl(~ :-,])(!C[~iCtIiiO/I~ ill l}/( '  tH'i l i l ; t]  >illil}]CX 311(t [)l']l~ -( } , 

ln 'oblems.  [,~ oi {,q' w<>rd~, the ~:~me : trray ~]ze a,~d ,~h. 4~,.. 
for  1tie coe{iiei(.i,i limlt'i× W(,l'(t u~(,({. T}w ( 'on[)o (,ill<,? 
I]lO }t1'1+}t}2% W(H'C ~(!ll(:!l+,'ll('({ l'ti[t(]Ollll~, <() }1~ tO [)|'()\'('l!{ })i:- 

,qS /llll(t}i DiS t)(()ssi[)J(!, i l l  ( 'ii}l(!F Dt(qi lo( l+ ["Ill' t}l(! D O -  !,.,l/'~ 

the  (h:nsi ty  of' the ,+~efti,ient ur ruv  wa< maini~dI>d u 
five percc.rll. T h e  NllI/II)OY Of 0011>11;.llll" + :- Vt[l+i(~(l fl'O]ll I0 +~ 

40 ,  and  the m l m b v r  of vari;d)le~ i 'allged f rom 15 lo (!) 
The  rc>u]is o b t a i n e d ,  a~ well a~ ~ome ca lcu la ted  l'e~l+-. 
to l)e lliscussed shorIly, are taimluted iu "Fable I. 

In .l ,me, 19(i0, i \Ir .  l i i c lmrd  i\Iills [2{ < u d i e d  tile i>r:,.- 
l ion l imes  for an i le ra i io , t  of /wimM dua l  versus i~rlm'.d 
shnplex, Mr.  Mill:< first din(.lls~-e~ hi> (t()lll[)tli ; l',lt 
i)rocedllr(', llSill~ Soliie ie(tmiques wigch he develop~ f<. 

) ' sa, v i n g  SOlllO ea le l l la t  iOliS i l i  i l ( ! r a t i t l ~  \ v i th  fhe t r i l l  I ( l  i:iJ 

meihod. Using ihe executiou l ime o,~ ill(, colnlmter i,~; 
elt(~h i l iSlF/l(~i iOll  i l l  l i t ( ) i t c i ' a l i o i l  liroct!(ltll'e, he 17 at)Is> ~+> 
esii ir iale lhe iolai  l ime {)ec i le la t io i i  for eacli l~' I(d, 
[tq lht !se ( tOl i : lpt l ia l io l i ,% }ic a~<Stllll(!S l h ' I t  i he  average l l l i l i l  
her of nonai' l i l ieial wcetols ill Llie t)as]s ['or t)ot}t llt(qi~od, 
iS O[le half tile l l t l l l l t )e l '  <Jr' COllsirainis. Also he a:<,~ume:, 
OTlly OI1(! vector is : , tded to ihe tmsis of t i le :i'c.:<ir'ilqt.d 
i)rhiia{ tiefoi'e new cilia] slacks tuv cotnlm, ied. The t;tibT 
asSUtlil)li<tn is })Ol'tie otit }LY ttCi/lal exl)erinietitatiott iti 1]~++ 
tlres,t!iit ~.q udy. 

Ti le i'esttll~ of ,kll', Xli l is' calcUlltiiOli~, wit(we m trod ,, 
~i,i'e ]lltrlttiiet(TS corre~t)ondhig re,-q)twiively Io lh(! t~lilH!+c! 
Of COllSll'aililS ttii(l vttl ' iald(s are:  

( I )  l)r i inal-dttai il(!raliOll l inie ill tnttch<iiie cycle>: 

77m ~ -F :-17.t.Sm + :J()mn --t- 9 t in -F  952 

(7 )  ~ i l i i  I lex i t e l ' a l i o i l  l i l i l e  i l l  i i i ac l l i l i ( '  Cy(!lC'S: 

77m ~ -t- 2H,Dm -F 3()m~ + 8(),t -F :,,t0. 

The, ad'vaiit',tge ()f ~iinpl(,x over i~r il ial-(ltad per ilt,l';~!i<, 
. ( )1 . .  [ti llittciiiti(~ eVt!ieS i~ [:g()]sl @ lib+ --p. ' ') 

For m = 20  and n :- 100, XI,'. Xlill~ t't/Ii tt test p,,>t>l,t+~ 
+/nij l i i i led (ho ilet"ttiOtlS. | le  foun<{ that the })rlnlaldli:d 
ilet'<qlioti iitiies were aiioui [i~(~ l)('t'ceitt longer {ltatt tiic 
simplex ire.ration time, which agrees wit li 1he tlleort,ti<d 
predict ions 1,isitil~ lhe "it)ore relti l ions t;m. 

Using L\h'. Xli l ls' lhc.oreiicai result:,% £Ollle t/ler(,stili~ 
f t l r ther  rosul{s cart t)e deduced. ~ut lOSe first the woJ>i 
(ttise is exal t l i i led;  thai  is, in the situati(m where tile lltlm- 
[)er of variables is at) l)roxi l l l : / lely equal io the tttlllllwr i>( 
(OI Sll'ait IS, the r</lio of the t ime advantage of simld('x t~> 
t:}ie iter,~tlion l i lne of slrll l i lex iS 

146m -F 612 
107m ~ + 324.5m, + 3 4 0  

I n  this  case, where the rat io  is la rges t  for  a given nil.tuber 
o£' ooIlstraints, the r'i, t io is less thau .05 for m greater tiuu~ 
or  equal to 2{"I. 

A lltOl'O l ikely si tuat ion is ()tie ill wh ich there 'll'0 <'V)O[I 
twice  Its lll.~tlly variables as (~oilstl'ainl.s. T im ratio of' llw 
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+~t' ;t(tvat ,~(, of siml)lex to the iieration trine of sinlplex 

~{, + l ) l l ] ( ~ S  

162m @ 512 
. . . . . . . . . . . . . . . . . . . . . . . . . .  o 

t '37~ e + ,i04.5m + 340 

i~* i~ greater than 21.5, this ratio is also less than .05. 
+h,s ii is a fair assun,ption in practically all situations 
}~,I the time difference in Ill(, two iterations is no larger 
}~:m t i re I)crcent. 

tf .ow the t)rimal-dual iteration counts are weighted by 
,),;. the bias for the ill!fallen time difference is taken imo 
~.,,.tult. When this weighted COllUt is subtracted from 
h(' Amplex iteration count for the data in Table 1, the 
.<ills are tat)uhth!d ht ihe Weighted D,~fl??'ences (:olumn 
i" l[l;tl tal)Ie. 

.\ n~(,thed of testing whether  or not the POl)ulatiot+ 
,c(ti:m, for the weighted iteration difference, is mere is 
:died the sigtmd-rank lest. T its test is the nonparametr ic  
,d.~uo of the parametr ic  t-test;  that  is, here no assuint)- 

+,, is made about  the tmderlying statisticM population 
,t' (lif[<en(es. The  ('x)tnputationai proeedul+e is, first, to 
'I,,l',t(> the differenees into two classes: those that  are 

,,~at hc  arm those t M t  are positive. The sum of the rauks 
t positive and negative differences are computed,  and 
hi' ab:~olute v:due of these sums is compared. The absolute 
,ha, of the smaller of ihe lwo sums is designated T. 
},, +(,st statistic for N (the sample size) greater  than 
hirtv is givetl by: 

27' + 1 - N ( N  + t ) / 2  
(N(N + 1)(2N + 1)/(i),]+ 

,,},+,rt, : is a nornml variate  [3]. 
]:()r ~}le da ta  in Table 1, T is 55 which corresponds to 

},. s ,m ()f' the ranks of neg~tive differences; the value of 
~ is :~1. Thus z is computed as: 

I tO + 1 --  3 1 ( 3 2 ) / 2  
z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.76. 

((3:t)(32)(03)/6) ~/~ 

l'}~is \'aJue iB highly significant. We use significance here 
,, its statistical sense; i.e., the probabili ty t ha t  this differ- 
!au, it~ weighted iteration count is due to ehanee is wm- 
4fi,gly small. One can therefore conclude tha t  the 
vt'iahtcd iteration count of primal-dual is sigtfificantly 
'<~ lhatt tllat of simplex. 

it is (widenl from an examination of Table 1 that  there 
-(~ ('o %sten t ly  high l)ositive difference in the iteration 
. , , I ,  whoa the ratio of the tmmber  of variables to eon- 
+r',d. s is abou t  two or more. However, it would be de- 
rattle tO slate  more precisely under what  conditions the 

+rimal<lua/ is superior to simplex. Also one would like to 
:,my what varia})les affect the difference in i terat ion 
, t . t  arid in wha+t way the significant variables affect the 
v<flt. 

-\ regression analysis seems to be a simple logical ap- 
,!+!ach to this problem. I t  is not obvious, a t  first, what  
~,rl of regression model to choose or what  independent  
',~:riubles to use Mong with the dependent: variable, the 
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i teration difference. After experimenting with sewwal 
linear regression models in terms of the variables m, n and 
n/,m, a model was chosen which is the simplest  in form 
with a relatively high squared correlation coefficient, R 2. 
Tile resulting regression equat ion is: 

d~ = 17.38 + .7709n - t .064m - 10.96n/m, 

with R 2 = .7185. Each of the regression coefficients is 
significantly different from zero. The t values ~u'e: 

g - - 6 . 5 5 4 4  for 15~ = .7709 

t = 5 .7377  for B~ = - - 1 . 0 6 4  

.... 5.2979 for Ba = -10 .976  

An F-lest  was also run to lest the hypothesis  that  the 
legal relation is zero. The computed F with 3 ~ttld 27 de- 
grees of freedom is: 

27R e 
F -  - 22 .97 ,  

2 ( 1 . -  I~ ~) 

whieh is highly significant as compared lo the tabular 
wflue of 2.96. Again, this result indicates that  tile prob- 
ability that. there is no relation of the  type indicated by 
the equation, i.e., that  this relationship is due to chance, 
is vauishingly small. Indeed, it was outside the range of 
any tables of the F-distribution bhat. we could find. 

It, should be noted that  as n increases while ?n and n / m  
remain nearly constant,  the i terat ion difference is in- 
creased. On tile other hand, increasing m, while the other 
independent variables remain nearly fixed, decreases the 
iteration differenee, d,., as expeeted. 

Notice however that  there is not just  a linear relation 
involving m and n here, but  there is also a linear te rm in 
the variable n/m. When n/m becomes greater  t, han or 
equal to two, the constant term no longer cancels its ef- 
fect, so for example the i teration differeuee is trot always 
increased by increasing n. 

5 .  C o n c l u s i o n s  

Under  the assumptions made in this paper,  namely, 
t ha t  bo th  methods begirt with a full artificial basis, the 
results of the da ta  analysis indicate a definite superiority 
of the primal-dual algorithm over primal-simplex. If 
modifications of this assumption are nmde :for either 
method,  this conelusion m a y  have to be modified. 

By using the computat ional  techrfiques suggested by 
Mr. Mills, the t imes per i teration are less than  five percent 
different for problems with 28 or more constraints. The 
results in Table 1 indicate a smaller i teration count per 
l)roblem for primal-dual over simplex. Combining these 
results, the conclusion is tha t  the primal-dual  algorithm 
is indeed faster  than  simplex, for solving linear program- 
ruing p r o b l e m s ,  if a phase  I w i t h  a fu l l  art i f ic ia l  bas i s  is 
employed.  Even if tile worst possible s i tuat ion prevailed, 
w h e r e  the number  of variables equals the number  of con- 
s traints  so tha t  primM simplex eammt, help bu t  proceed 
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t o w a r d  op(imati t ,  y as  well  as f e a s i b i l i t y  i~ phase  I,  the  

1)r i tual -dual  is still a b o u t  as  g o o d  as  p r i m a l  s implex .  T h i s  

is an  e x t r e m e l y  importa~at  f inding .  I n  effect ,  it says  that) 

it is ~wver u n d e s i r a b l e  to  use p r i n m l - d u a I  i n s t ead  o[' p r i m a l -  

simplex. On the  o t h e r  hand, w h e n  the  rai:io of u to 'm. is 

a b o u t  two or  more ,  it. k)e(:'omes e x t r e m e l y  undes i r ab l e  (:.o 

~se  s iml) lex  r a t h e r  t h a n  p r i m a L d u a l .  

]~i.tmlly the  t 'esults of  ihe  r ( g r e s s i o n  ana lys i s  i n d i c a t e  

that the iml)ortat]t independent v a r i a b l e s  a f fec t ing  the  

s ize  of  the  itet'al:ioz, d i f fe rence  are:  t he  n u m b e r  of eon-  

s i r a i n t s ,  the  numt)er  of v a r i a b l e s ,  and  the  ra t io  of 13he 

n u m b e r '  of v a r i a b l e s  to eons{ra in t s .  

}(ECEIVED JUNE, 1965 

II EFEI¢ EN C 1,;S 

1. tI:,,o[a~:5, (~. ],im(ic l'roqcammi,~g. (lh. 3 S. :\(tdiso>.--Wesley 
l 'ublishillg (!o. IHc., I{eacling, Mass., Ji)tE. 

2. XhH,s, I{. An ev:thiatiou ¢)f the pt'imal dual aig(~ritlun for 
linear progl'amn/h/g. Masters Thesis, M:,ssaehuse~ts Institute 
of Teelmology, (~n.mbridge, Mass., ,]ulte 19(3(). 

3. Ct,Et,I,tXI), t1. C., txl) TaTI!:, M.W.  Xo~pa~'ameg*'ic and Short- 
cut Sla[islics i~l lhe Social, I¢iological, {***d Mcdicol Sciences. 
Inters ta te  Prinlers  :rod Publishers, lue., I):~Hville, [11., 1957. 

4. WOLFf:, P., t.\'D (2(r't'[,~,:~¢, L. Experilneltts i~ lira?at program- 
ruing. In Recent ,l&~arl, ccs in ,llalltema[ic(g Programming, 
l{.. L. Graves, at>:t P. Wolfe (Eds.), Mc(;raw Hilt Book Co.. 
New York, 1963. 

5. KUtIN, H., AND QUANDT, l{. E. All exl/erime~tal st:rely of the 
simplex melhod. Proe. Syrup. ira Applied Mat.heronries, Vol. 
XV, Amer. Math. Soe., l)rovidenee, 1{. l., 191;3. 

NAUR--continued from page 676 

T h e  I n t e g r a t i o n  P r o g r a m  

b e g i n  i n t e g e r  k, n; rea l  u, "w; 
r e a l  p r o c e d u r e  Romberg (a, b, x, if, delta, max ord) ; 
v a l u e a ,  b, della; reala,  b ,x , f ,  delta; in tegermaxord;  
e o n H n e n t  l~omberg integrates the function f(x) from a to b. 

The  t)arameters are: 
a :: Lower limit 
b : Upper limit 
z:  The real  variable of integratiort 
f :  The function to be integrated,  given as a real  

depending on x 
della: A relative tolerance 
max ord: On entry the maximum number of iterations. On 

exit the number of i terat ions performed; 
b e g i n  r ea l  step, [1, [2, s't~m, error', f0; 
i n t e g e r  k, p, j; 
a r r a y  t**~pez[l:max ord+t] ;  
step := b - a ;  
.,.: :=  a; [1 :=  f ;  
z : = b ;  
D'apezI1] := ([1 + f) X :step/2; 
[I : = O ;  
tk~r k := 1 s t e p  1 u n t i l  max ord do  

b e g i n  

.~tep := step/2; p :=  2}k; 
for  j := p - 1  s tep - 2  u n t i l  1 do 

b e g i n  
x : = j / p  ; 
:~: := x X a  + ( l - x )  X b ;  f0 : = f ;  
I2 := sz~m + f0; 
error := error + (if abs(fO) > abs(sum) 

t h e n  z u m , - - ( / 2 - - f 0 )  else f 0 - -  ([2--sum)); 
,?~m := I2; 
e n d  summatio~ of funetiot] values and errors; 

[2 :=  ~rapez[t~-kl] := lrapez[k]/2 + (I2+error) X step; 
eo :mn len t :  This  was a trapezoidal  integration with 2~'k 

subintervals ;  
p : = l ;  
iT~r j := k s tep  --1 u n t i l  1 do 

b e g i n  p := 4 X p; 
[2 := ~Y~pezlj] := ([2Xp-- trapez[j]) / (p-1)  

end  the extrapolation from the k fit'at approximarxts; 
i f  abs ( [2 - [1 )  < della X abs(12) t h e n  go to f i n &;  
[1 := [2 
e n d  for k, i.e., a whole i terat ion;  

f i n i s  : 
max ord := k; 
e o n n u e n t :  For  tile effect of this s ta tement ,  see Section 2; 
Romberg := I2 

e n d  Romberg procedure; 

i n t e g e r  d; 
d := drumplaee; gierdrwm(33, w); 

b e g i n  B o o l e a n  array  7'[1: w]; i n t e g e r  p; 
writetext (( < 

S~et, KB}); typechar; dr,~mplace := d; j~'om 4rz~m(T); 
for  p := 0 s t e p  1 u n t i l  25 do 

b e g i n  array  A[0:41Xp];  r e a l B ;  
i f  kbon t h e n  gicrproc(T[3]) e l s e  lypechar; 
/~ := 5; n := 7;: 
B := Rombew(O, 1, % i f  u = 0 V u = l  t h e n  0 e l s e  

Rombew (0, exp ( - k /sqrt (-- In (u) ) ), v: , 
i f  w = 0 t h e n  0 e l s e  ( - In (w) ){ ( - -n ) ,  0.Ol, t2)/(~n(@)~6, 0.01, 

12) ; 
i f  kbon t h e n  b e g i n  gierproc(T[2]); outp~d((ndd}, p) end  

e l se  b e g i n  writecr; write({d.d&o-dd}, B); 
write((-nddd.d}, p, gypein) 
end ;  

e n d  
end  

end;  
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